
ARx_Operator.ag

ARx_Operator.ag ii

COLLABORATORS

TITLE :

ARx_Operator.ag

ACTION NAME DATE SIGNATURE

WRITTEN BY April 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARx_Operator.ag iii

Contents

1 ARx_Operator.ag 1

1.1 ARexxGuide | Operators . 1

1.2 ARexxGuide | Operators (1 of 4) | CONCATENATION . 1

1.3 ARexxGuide | Operators (2 of 4) | ARITHMETIC . 2

1.4 ARexxGuide | Operators | Arithmetic (1 of 1) | TABLE . 3

1.5 ARexxGuide | Operators (3 of 4) | COMPARISON . 4

1.6 ARexxGuide | Operators | Comparison (1 of 1) | TABLE . 5

1.7 ARexxGuide | Operators (4 of 4) | LOGICAL . 6

1.8 ARexxGuide | Operators | Logical (1 of 1) | TABLE . 6

1.9 ARexxGuide | Operators | Note (1 of 2) | PRIORITY . 7

1.10 ARexxGuide | Operators | Note (2 of 2) | PARENTHESES . 8

ARx_Operator.ag 1 / 8

Chapter 1

ARx_Operator.ag

1.1 ARexxGuide | Operators

AN AMIGAGUIDE® TO ARexx Second edition (v2.0)
by Robin Evans

Using operators in expressions -- Basic Elements section.

ARexx operators:

Concatenation

Arithmetic

Table of arithmetic operators

Comparison

Table of comparison operators

Logical

Table of logical operators

Operator priority

Parentheses: Change priority
Copyright © 1993,1994 Robin Evans. All rights reserved.

This guide is shareware . If you find it useful, please register.

1.2 ARexxGuide | Operators (1 of 4) | CONCATENATION

Concatenation operation
~~~~~~~~~~~~~~~~~~~~~~~
A concatenation operator combines a pair of strings into one string. The
operators take three forms in ARexx: a blank space between strings,



ARx_Operator.ag 2 / 8

abuttal of two strings, or the characters ‘||’ between strings.

The easiest way to combine strings is to place them next to each other on
the same line like this:

/**/
Str = ’This is one string’ ’and another’
say Str >>> This is one string and another

It may not look like it, but there’s an operator at work here. The space
between the two strings is one of three forms of the concatenation
operator. Only one blank is considered an operator. Others will be
stripped, so the same value results from both of the following:

say ’single’ ’blank’ >>> single blank
say ’single’ ’blank’ >>> single blank

Expressions can be abutted against one another to combine the two values:

/**/
Str1 = ’No’
say Str1’space’ >>> Nospace

Abuttal of string values is an implied operator telling ARexx to combine
the two strings without an intervening blank.

Implied abuttal will not always work. For instance, two variable symbols
cannot be combined that way without creating a new symbol. ARexx provides
the explicit concatenation operator ‘||’ for those circumstances. When
placed between two expression with any number of blanks dividing the
operator and the expressions, the operator causes the strings to be
combined without intervening blanks.

/**/
Str1 = ’No’
Str2 = ’space’
SAY Str1 || Str2 >>> Nospace

A single ’|’ is not a concatenation operator. It is, rather, the
logical

operator representing OR in an expression.

Technique note: Format a table of information
Determine library version number

Next: ARITHMETIC | Prev: Operators | Contents: Operators

1.3 ARexxGuide | Operators (2 of 4) | ARITHMETIC

Arithmetic operation
TABLE OF ARITHMETIC Operators

~~~~~~~~~~~~~~~~~~~~
Any two expressions that yield a number can be combined using the
dyadic arithmetic operators that take this form:

ARx_Operator.ag 3 / 8

<num expr> <operator> <num expr>

ARexx also recognizes two prefix operators that affect only the number to
the right. The prefix operators take this form:

<operator><num expr>

<num expr> can be a constant , variable , or the result of a function
or of another expression.

With both dyadic and prefix operators, blanks between the operator token
and <num expr> are allowed and will be removed by ARexx. Leading or
trailing blanks in the number will also be removed as part of the
conversion. The result of the expression is formatted according to the
current settings of NUMERIC DIGITS .

If the numeric setting is shorter than the number of digits in <num expr>,
then a prefix operation will cause a loss of precision in the number.
This characteristic may be used instead of the TRUNC() function to round
numbers to a desired size:

bn = 1.239856790097
say digits() >>> 9 /* current NUMERIC setting */
say bn >>> 1.239856790097
say +bn >>> 1.23985679 /* formatted to 9 digits */
say trunc(bn, 2) >>> 1.23 /* not rounded */
numeric digits 3 /* change setting */
say +bn >>> 1.24 /* fraction is rounded */

Technique note: Format() user function

Next: COMPARISON | Prev: Concatenation | Contents: Operators

1.4 ARexxGuide | Operators | Arithmetic (1 of 1) | TABLE

Table of arithmetic operators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Operator Operation
Priority
Type

-------- -------------------------------- ---------- ---------
+ Addition 5 Dyadic
- Subtraction 5 Dyadic

* Multiplication 6 Dyadic
/ Division 6 Dyadic
% Integer division. (Divide number 6 Dyadic

on the left by number on the
right and return the integer
part of the result)

// Remainder (Divide numbers -- 6 Dyadic
left by right -- and return
the remainder, which may be
negative)



ARx_Operator.ag 4 / 8

** Exponentiation. (Raise the 7 Dyadic
number on the left to the whole
number power on the right)

- <num> Negation. (Same as 0 - <num>) 8 Prefix
+ <num> Conversion. (Same as 0 + <num>) 8 Prefix

Examples:
Sev = 7
say 10 + Sev >>> 17
say 10 - Sev >>> 3
say 10 * Sev >>> 70
say 10 / Sev >>> 1.42857143
say 10 % Sev >>> 1
say 10 // Sev >>> 3
say 10 ** Sev >>> 10000000
say +Sev >>> 7
say -Sev >>> -7

Next, Prev & Contents: Arithmetic

1.5 ARexxGuide | Operators (3 of 4) | COMPARISON

Comparison operation
TABLE OF COMPARISON OPERATORS

~~~~~~~~~~~~~~~~~~~~
The result of an expression using comparison operators is one of two
values: either 0 for FALSE or 1 for TRUE. Each of the operators compares
the value to the right of the operator with the value to the left. A
comparison of alphabetic values is case-sensitive.

Comparison expressions take this form:

<expr> <operator> <expr>

<expr> can be any expression including a variable or number , or the
result from another expression.

There are two classes of comparison operators: normal and strict. The
normal comparison operators ignore leading and trailing spaces in <expr>
and, when performing numeric comparisons, ignore leading 0’s in a number.
The two strict operators, ‘==’ and ‘~==’ compare <expr> character-for-
character -- spaces and 0’s included -- and treat all numbers as character
strings.

When using the normal operators, ARexx will perform a numeric comparison
if the values on both sides of the operator are numbers . In other words,
‘9<19’ will evaluate to 1 (TRUE), but if either value is non-numeric, both
will be treated as character strings: The string ‘101a’ (which is not a
number) is less than the string ‘33’ (which is a number) because the
lexical order of the character ‘1’ is lower than that of the character ‘3’.

Strings like ‘2e5’ are numbers because the ‘e’ indicates that the
following numeral is an exponent .

ARx_Operator.ag 5 / 8

Comparison expressions are often used as the <conditional> in IF ,
WHEN , or DO instructions, but they may also be used as a subexpression

in a compound operation:

a = (a<b) * 5

[A] will be given a value of either 5 or 0 depending on the outcome
(either 1 or 0) of the comparative expression in parentheses.

The
LOGICAL
operators can be used to produce a Boolean result from two

or more comparative expressions.

Interactive example: Compare two values *
Technique note: Get/set environmental variables

Compatibility issues:
The REXX standard specifies additional ‘strict comparison’
operators. Where ARexx offers only ‘==’ for ‘exactly equal to’ or
‘~==’ for its negation, the standard specifies ‘>>’, ‘<<’, ‘>>=’,
‘<<=’ for greater/less comparisons that respect the spaces in a
string. Each of these operators has a negation.

Also see note about the standard negation character in the

Table of Logical Operators
.

Next: LOGICAL | Prev: ARITHMETIC | Contents: Operators

1.6 ARexxGuide | Operators | Comparison (1 of 1) | TABLE

Table of comparison operators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Operator Operation (what it tests for)
Priority
Class

-------- -------------------------------- ---------- --------
= is equal 3 Normal
== is exactly equal 3 Strict
~= is not equal 3 Normal
~== is exactly not equal 3 Strict
> is greater than 3 Normal
>= is greater than or equal to 3 Normal
~< is greater than or equal to 3 Normal
< is less than 3 Normal
<= is less than or equal to 3 Normal
~> is less than or equal to 3 Normal

Samples:

Expression Result Notes
--------------------- ------ -------------------------------------



ARx_Operator.ag 6 / 8

’about’ < ’around’ TRUE Alphabetic comparison
30 > 7 TRUE Numeric comparison
’30’ > ’7’ TRUE Numeric comparison performed even

when the number is entered as a
string.

’Thirty’ > ’Seven’ TRUE ’T’ has a higher ASCII value than ’S’
30 > ’Seven’ FALSE Alphabetic comparison performed.

Digits have a lower value in ASCII
than all alpha characters.

’foo’ = ’foo ’ TRUE blanks are ignored
’ foo ’ = ’foo’ TRUE both leading and trailing blanks are

ignored
’foo’ == ’foo ’ FALSE ’==’ causes blanks to be significant

Next, Prev & Contents: Logical

1.7 ARexxGuide | Operators (4 of 4) | LOGICAL

Logical operation
TABLE OF LOGICAL OPERATORS

~~~~~~~~~~~~~~~~~
Any two valid expressions that yield a Boolean value (either 1 or 0)
can be combined using the dyadic logical operators that take this form:

<Boole expr> <operator> <Boole expr>

ARexx also recognizes a prefix negation operator that has effect only on
the expression to the right. The prefix operator takes this form:

<operator><Boole expr>

<Boole expr> may any expression -- a constant , string , variable , or
the result of a function or of another operation.

Next: Operators | Prev: Comparison | Contents: Operators

1.8 ARexxGuide | Operators | Logical (1 of 1) | TABLE

Table of logical operators
~~~~~~~~~~~~~~~~~~~~~~~~~~

Operator Operation
Priority
Type

-------- -------------------------------- ---------- ---------
~ NOT -- negation. TRUE value 8 Prefix

becomes FALSE and visa-versa
& AND -- TRUE only if both terms 2 Dyadic

are TRUE
| OR -- TRUE if either of the 1 Dyadic



ARx_Operator.ag 7 / 8

terms is TRUE
&& Exclusive OR
^ Exclusive OR -- TRUE if one but 1 Dyadic

not both of the terms is TRUE.

Compatibility issues:

Although it is accepted as an option in some other implementations
of REXX, the ‘~’ character is not recognized as a negation character
in the REXX standard. The standard specifies that the negation
character should be either ‘\’ or ‘\ensuremath{\lnot}’ (ASCII 172 or ’AC’x -- ←↩

alt-
shift-Z on an Amiga keyboard).

The ‘^’ character is not recognized as an alternative representation
for ‘exclusive or’ by the standard. Only the ‘&&’ symbol (also
available in ARexx) is used for that purpose.

Next, Prev & Contents: Logical

1.9 ARexxGuide | Operators | Note (1 of 2) | PRIORITY

Operator priority
~~~~~~~~~~~~~~~~~
ARexx normally evaluates a clause from left to right. That could cause
problems in operations, however, because the order in which terms are
presented in an operation would have a significant effect on the result:
‘4 + 3 * 5’ would result in 35 if the operations were performed in strict
left-to-right order while ‘5 * 3 + 4’ would result in 19.

To prevent such differences in the results two similar operations, ARexx
assigns to each operator a priority. Instead of evaluating all terms in an
operation in the usual left to right order, the interpreter performs the
operations with a higher priority before evaluating those with a lower
priority.

The table below lists the relative priority of the various operators:

Operation Represented by Priority
------------------------- ---------------------- --------
Prefix + - ~ 8
Exponentiation ** 7
Multiplication/Division * / // % 6
Addition/Subtraction + - 5
Concatenation || <blank> <abuttal> 4
Comparison = == < > >= <= ~> ~< ~= 3
And & 2
Or/Exclusive or | && ^ 1

Multiplication operations have a priority of 6 while addition has a
priority of 5, which means that the both of the alternative forms of
writing ‘4 + 3 * 5’ will result in 19 because the multiplication operation
will be performed before the addition operation.

ARx_Operator.ag 8 / 8

Next: Parentheses & priority | Prev: Operators | Contents: Operators

1.10 ARexxGuide | Operators | Note (2 of 2) | PARENTHESES

Using parentheses to change priority
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Parentheses may be used in any expression to control the order in which
the expression is evaluated.

Parentheses force evaluation of the enclosed expression before other
operations are performed. This grouping will sometimes have a significant
effect on the result of an expression:

[A] 2 + 4 * 3 = 14
[B] (2 + 4) * 3 = 18

The multiplication operator has a higher priority than the addition
operator, so ARexx multiplies 4 and 3 in line [A] before adding the
resulting values. In line [B], on the other hand, addition is done first
because the parentheses make the operation a subexpression.

Although they are not needed in the following expression, parentheses may
still be used to group expressions even when they do not affect the order
of evaluation.

2 + (4 * 3) is the same as 2 + 4 * 3 because of the
priority of the operators.

Expressions can be nested up to 32 levels. Error 43 will be generated
if there are more than 32 nesting levels in an expression.

Next: Operators | Prev: Priority | Contents: Operators


	ARx_Operator.ag
	ARexxGuide | Operators
	ARexxGuide | Operators (1 of 4) | CONCATENATION
	ARexxGuide | Operators (2 of 4) | ARITHMETIC
	ARexxGuide | Operators | Arithmetic (1 of 1) | TABLE
	ARexxGuide | Operators (3 of 4) | COMPARISON
	ARexxGuide | Operators | Comparison (1 of 1) | TABLE
	ARexxGuide | Operators (4 of 4) | LOGICAL
	ARexxGuide | Operators | Logical (1 of 1) | TABLE
	ARexxGuide | Operators | Note (1 of 2) | PRIORITY
	ARexxGuide | Operators | Note (2 of 2) | PARENTHESES


